Wille, J.D., Favier, V., Jourdain, N.C., C. Kittel, J. V. Turton, C. Agosta, I. V. Gorodetskaya, G. Picard, F. Codron, C. Leroy-Dos Santos, C. Amory, X. Fettweis, J. Blanchet, V. Jomelli, and A. Berchet: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun Earth Environ 3, 90 (2022). https://doi.org/10.1038/s43247-022-00422-9
Abstract
The disintegration of the ice shelves along the Antarctic Peninsula have spurred much discussion on the various processes leading to their eventual dramatic collapse, but without a consensus on an atmospheric forcing that could connect these processes. Here, using an atmospheric river detection algorithm along with a regional climate model and satellite observations, we show that the most intense atmospheric rivers induce extremes in temperature, surface melt, sea-ice disintegration, or large swells that destabilize the ice shelves with 40% probability. This was observed during the collapses of the Larsen A and B ice shelves during the summers of 1995 and 2002 respectively. Overall, 60% of calving events from 2000–2020 were triggered by atmospheric rivers. The loss of the buttressing effect from these ice shelves leads to further continental ice loss and subsequent sea-level rise. Under future warming projections, the Larsen C ice shelf will be at-risk from the same processes.